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The overall objective of this study is the ecotoxicological characterization of the benzoxazinone 2,4-
dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), the benzoxazolinones benzoxazolin-2-one
(BOA) and 6-methoxybenzoxazolin-2-one (MBOA), and their transformation products: phenoxazinones
2-acetylamino-7-methoxy-3H-phenoxazin-3-one (AAMPO), 2-acetylamino-3H-phenoxazin-3-one (AAPO),
2-amino-7-methoxy-3H-phenoxazin-3-one (AMPO), and 2-amino-3H-phenoxazin-3-one (APO); amino-
phenol 2-aminophenol AP); acetamide N-(2-hydroxyphenyl)acetamide (HPAA); and malonamic acid
amide N-(2-hydroxyphenyl)malonamic acid (HPMA). A comparison between empirical results and
theoretical ones using rules-based prediction of toxicity was done, and it can be concluded that only
the degradation metabolites exhibited significant ecotoxic effect. Using synthetic pesticides knowledge,
several QSAR models were trained with various approaches and descriptors. The models generated
exhibited good internal predictive ability (Rcv

2 > 0.6) and were used to predict the toxicity of the
natural compounds studied.
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INTRODUCTION

Because no land is free from attack by pests, plants have
developed natural chemical defenses to survive. When plants
are stressed or damaged, for example, during a pest attack, they
may greatly increase their output of natural pesticides, such as
allelochemicals, that is, benzoxazinones (1). Thus, natural
compounds could be an alternative to synthetic pesticides.
Because very little is known about the toxicity of these
compounds, examination of their toxicity using both experi-
mental and computational methods is of high interest.

In silico approaches are challenging methods to cover many
knowledge gaps when experimental toxicity data are difficult
to determine or not available at all. These approaches differ
from laboratory experiments, in vivo and in vitro, because they
do not involve the use of any biological system. They are based
on the theoretical knowledge gained in different fields of the
science and aided by the powerful computational capabilities
of modern computers. Quantitative structure-activity relation-
ship (QSAR) leads to finding a relationship (model) between
the chemical structure of compounds and a given property (2-
4). In this way QSARs are used for deriving models to predict

property values for chemicals. The basic assumption of QSAR
is that a quantitative relationship between the molecular structure
of compounds and their biological, chemical, and physical
properties does exist.

The characterization of chemicals from a toxicological point
of view was done using both experimental animal tests and
computational approaches. As the toxicological evaluation of
synthetic pesticides is well documented, this information was
used to train models and to assess the toxicity values of
benzoxazinones and derivatives and in particular 2,4-dihydroxy-
7-methoxy-1,4-benzoxazin-3-one (DIMBOA), benzoxazolin-2-
one (BOA), and 6-methoxybenzoxazolin-2-one (MBOA). More-
over, as benzoxazinones from wheat were shown to degrade
very rapidly in soil (5-11) and the transformation products
showed more pronounced biological activity than the parent
compounds from wheat (12-19), the toxicity of the following
degradation compounds was also investigated: 2-amino-3H-
phenoxazin-3-one (APO), 2-amino-7-methoxy-3H-phenoxazin-
3-one (AMPO), 2-acetylamino-3H-phenoxazin-3-one (AAPO),
2-acetylamino-7-methoxy-3H-phenoxazin-3-one (AAMPO),
2-aminophenol (AP),N-(2-hydroxyphenyl)acetamide (HPAA),
andN-(2-hydroxyphenyl)malonamic acid (HPMA).

Daphnia magnawas used as a representative of the primary
consumers in aquatic ecosystems (20). Those organisms are
widely used for ecotoxicity and risk assessment in routine
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analysis, and the test procedures are known to be reproducible
and to generate reliable results.

MATERIALS AND METHODS

Biological Data. For this study, the toxic characterization of
benzoxazinones and their degradation products was freshly investigated
using the acuteD. magnaimmobilization test DIN 38412 L30 (21),
similar to OECD 202 (22). These data, which will be referred to in the
remainder of the paper as the test set, contain benzoxazinones and
benzoxazolinones (DIMBOA, BOA, and MBOA) and their transforma-
tion products (AAMPO, AAPO, AMPO, APO, AP, HPAA, and
HPMA). The freshwater microcrustaceaeD. magnaSTRAUSS was
obtained in 1997 from the Higher School for Chemistry, Vienna, and
kept in continuous culture in tap water at the IFA-Tulln. The biotests
were performed in 100 mL beakers with 20 mL of tap water and five
juvenile daphnia (ages between 4 and 24 h) in each vessel. The solvent
solutions of the test substances were added in a fixed volume of 25
µL/100 mL of test medium. Positive references were done for each
test series using potassium dichromate solutions to reach final
concentrations of 0.9 and 1.9 mg/L (the recommended EC50 range for
test validation). Each test was run in at least three replicates. The test
run time was 48 h with an intermediate control after 24 h (which was
not used for the final calculation). The conditions were 22°C and a
daylight/night cycle of 16/8 h. During this run time the animals were
not fed, and any other disturbances were avoided. For the final
evaluation the number of mobile (moving by themselves after a very
gentle shake) individuals was counted in each beaker and treated as
survivors. Only those test batches where not more than one immobile
animal was found in the three control vessels were evaluated. The
inhibition was calculated using the formula

where Nsample is the number of immobile daphnia in three sample
beakers.

After the inhibition results had been fit to the Weibull equation (eq
2), the EC50 values were calculated from the function indices (eq 3).

where y is the inhibition in %,x is the concentration of the tested
substance in mol/L, anda, b, and c are formular constants to be
calculated by the curve-fitting algorithm.

On the other hand, toxicological evaluation of synthetic pesticides
is well documented, and this information was used to train QSAR
models. The training set, as the present data will be referred to, was
built by selecting 86 synthetic pesticides with structures similar to those
of the benzoxazinones (DIMBOA, BOA, and MBOA). In particular,
all compounds contained an aromatic and/or heterocyclic ring with
nitrogen and/or oxygen atoms. The toxicity values were collected from
different sources:The Pesticide Manual(21), the U.S. EPA Ecotox
database (24), and the CIRCA Website (25). The endpoint was EC50

(concentration causing immobilization to 50% of the test organisms)
for D. magnaexposed for 48 h.

Test and training data are expressed as follows: output) log(MW/
EC50) (MW ) molecular weight) to refer to the moles of the chemical
and not the weight, as good practice in QSAR studies (26).

Optimization. To correctly describe the three-dimensional (3D)
structural and electronic properties of the molecule under study in
QSAR, one has to consider it in a stable (optimized) conformation.
The variations of torsion angles have the biggest impact on the energy
of the molecule and determine the overall molecular shape. Theoreti-
cal-computational approaches in conformational searching are based
on the variation of the degrees of freedom in the molecule. Afterward,
the minimization of the internal strain of the molecule to find the global
minimum has been done. The optimization procedure is driven by a
gradient normal, which reflects the energy changes with respect to

structural changes. When the gradient value becomes low, the structure
optimization finishes in a minimum.

The Monte Carlo method (MCMM) implemented in MacroModel
8.1 was used for the conformational search of the studied compounds
using Maestro 5.1 graphical user interfaces (27). For each compound
the lowest energy conformation was used as the starting point for
geometry optimization by a semiempirical AM1 method (28) as
implemented in the Gaussian 03 package of computer codes (29).
Vibrational analysis was performed at the optimized geometry to ensure
that the found conformation is a minimum (no imaginary frequencies
were found). Partial charges from Mulliken population analysis were
used.

Chemical Descriptors.Once the structure is in the minimum energy
state, it is possible to calculate the descriptors that mathematically
characterize the molecule. The descriptors calculated can be divided
according to type into two general classes.

Atom-based descriptorsdescribe only the magnitude of particular
physical properties but no directional preferences that these properties
may have. One hundred and seventy-three descriptors were calculated
including the atoms themselves, molecular fragments, or substructures
(functional groups), molecular indices derived by topological methods
(molecular connectivity indices, related to the degree of branching in
the compounds), atomic properties (electrotopological indices or atomic
polarizability), geometrical properties (molecular surface area and
volume, moment of inertia, shadow area, projections, and gravitational
indices), electrostatic properties (partial atomic charges and others
depending on the possibility to form hydrogen bonds), using CODESSA
(comprehensive descriptors for structural and statistical analysis)
software (30), and physicochemical properties (logP) using Pallas 3.0
(31). Using this approach, 174 chemical descriptors were calculated
and assigned the name data set A.

Field-based descriptorsdescribe the microenvironment surrounding
the molecules (molecular electrostatic and steric potential and van der
Waals volume). This approach, which is called comparative molecular
field analysis (CoMFA), looks at the molecules in three dimensions
and describes the magnitude and directions of electronic and steric
interaction (32). This technique measures the steric and electrostatic
interaction energies between a small probe at a series of regular grid
positions around the molecules. It is important to emphasize that the
structures have to be aligned (superimposed) to occupy the same
position in space. The CoMFA calculations were done with Chem-X
software (33). A sufficiently large box was positioned around the
molecules, and grid spacing of 1 Å was defined. For steric and
electrostatic fields we used the distribution of van der Waals volume
around the compounds and positive dot charge unit, respectively. Energy
cutoff was 20 kcal/mol for the electrostatic field. The standard deviations
of the energy columns were in accordance with the generally accepted
threshold of 1-2 kcal/mol. A common phenyl ring was used as a
template to align the compounds, and for compounds with two or more
phenyl rings, the phenyl rings attached to the heterocycle ones were
selected. The ligands were superimposed by the flexible fitting option
in Chem-X. This approach was used only on aromatic compounds (76
chemicals) because the phenyl ring was used to align them. Therefore,
585 chemical descriptors were calculated, and we called this matrix
data set B.

Statistical Analysis.Once biological data have been collected and
chemicals have been associated with a proper set of descriptors,
mathematics takes care to extract the information hidden in the numbers.
We used different approaches for the different data sets called A and
B, applying different statistical analyses to select the variables or to
construct the model.

On data set A (86 compounds and 173atom-baseddescriptors
calculated) we used multiple linear regression (MLR) and the group
method of date handling (GMDH).

MLR is the first and most diffuse technique in chemometrics and,
especially, in QSAR studies. It was coupled with a genetic algorithm
(GA) variable selection to reduce the noise caused by irrelevant
variables. The GA procedure is described in detail in ref34; in this
case the objective function is the MLR regression model derived on
the training set.

% inhibition ) Nsample× 100/15 (1)

y ) 100× [a + (1 - a) × (1 - exp(-x/b)c)] (2)

EC50 ) b × ln 21/c (3)
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GMDH neural networks (35) are able to self-organize an optimal
complex model composed of a set of self-selected relevant descriptor
variables starting from a completely unknown and not predefined model
structure. In this way it is possible to systematically self-organize not
overfitted linear or nonlinear models, making this knowledge extraction
technology well suited for QSAR modeling. On data set A, variable
selection was done using this kind of approach, and the algorithm comes
up with a final model composed of a few self-selected and relevant
descriptors only. Such a model can be linear or nonlinear, which in
our case means automatically obtaining a linear or nonlinear multivariate
polynomial regression model. When one uses the predicted values of
the generated individual linear or nonlinear models as inputs instead
of the intitial descriptor values, GMDH neural networks self-organize
an optimal combination of the individual models, ending in a combined
model the performance of which usually increases compared with
individual ones.

On data set B containing 76 chemicals (only the aromatic compounds
of data set A) and 585field-baseddescriptors we used partial least-
squares (PLS) analysis.

PLS (36, 37) is especially useful when the number of independent
variables is comparable to or greater than the number of compounds
(data points) and/or there exist other factors responsible for correlations
between variables, because it leads to stable, correct, and highly
predictive models even for correlated descriptors (38,39).

In all of these different approaches a model validation step has been
done to ensure the model’s predictivity. Therefore, internal and external
validations were included in the process. Each model was first validated
using leave-one-out cross-validation (LooCV) (33) (internal validation).
In this method each chemical in the training set is systematically
excluded once from the data set, after which its activity is predicted
by a model derived from the remaining chemicals. During this process
the cross-validatedR2 will be derived. A model withRcv

2 > 0.5 is
normally considered to have a significant predictive ability (32). This
internal validation assesses the model’s extrapolation within the training
set, but the only way to truly test any QSAR model is to use it to
predict the activities of compounds that have not been included in
designing the model. Therefore, the models obtained here are then tested
on the external test set.

RESULTS AND DISCUSSION

The results summarized inTable 1 represent the training set
compounds (synthetic pesticide) with experimental toxicity
values together with the values predicted using different
computational approaches. Additionally,Rcv

2 and the number
of selected variables for each model are shown. Usingatom-
baseddescriptors (data set A containing 86 compounds) we built
one GA/MLR model and six different GMDH neural network
models: three linear, two nonlinear, and one, called combined,
obtained from a combination of the previous five models.
Moreover, using only aromatic compounds (76 molecules), we
calculatedfield-baseddescriptors (data set B) and built a PLS
model. The results showed for all models good regression
coefficients (Rcv

2 > 0.6) except for the M2 linear model that
we reported because it was used, together with all other GMDH
neural network models, to build the M6 combined one.

Then we used these models to predict the toxicity of the
natural compounds studied (benzoxazinoids and their transfor-
mation products), using them like an external test set.

In Table 2, the experimental toxicity values obtained for
benzoxazinones and their transformation products, expressed
as -log EC50, are summarized. For the three substances AP,
APO, and AAPO, reliable EC50 values were obtained from the
Weibull curve fit. For all other tested substances no significant
inhibitions were measured and no curve-fitting was possible.
The maximum test concentration was reached by the individual
solubility of each substance; no suspensions were used for the
tests. Therefore, the results are given as EC50 > maximum tested
concentration.

Table 2 contains also the values predicted by the different
models for the external test set. The boldfaced compounds
(DIMBOA, BOA, MBOA) are the ones containing the structures
(Figure 1) more similar to the training set (pesticides).
Unfortunately, for these compounds numerical values are not
available; we have only an indication of the relevant range (<).
Anyway, for these three compounds the experimental toxicity

Table 1. Rcv
2 and Number of Variables Used for Different Approaches: Models Built Using Atom-Based Descriptors (MLR/GA and Linear, Nonlinear,

and Combined GMDH Neural Network Models), Followed by the Values Obtained Using Field-Based Descriptors (PLS Model) and Only the Aromatic
Compounds (76 Molecules)

atom-based descriptors

GMDH neural networks
field-based
descriptors

MLR/ GA M1 (linear) M2 (linear) M3 (linear) M4 (nonlinear) M5 (nonlinear) M6 (combined) PLS

Rcv
2 0.76 0.68 0.59 0.72 0.65 0.64 0.79 0.97

no. of variables 10 9 6 8 4 5 5 6

Table 2. External Test Set with Experimental Toxicity Values Expressed as − log EC50 Together with the Theoretical Values Obtained Using
Different Approaches: Values Predicted Using Atom-Based Descriptors (MLR/GA Model and Linear, Nonlinear, and Combined GMDH Neural
Network Models), Followed by the Values Obtained Using Field-Based Descriptors (PLS Analysis)

atom-based descriptors

GMDH neural networks
field-based
descriptors

molecule exptl value GA/MLR M1 (linear) M2 (linear) M3 (linear) M4 (nonlinear) M5 (nonlinear) M6 (combined) PLS

AAMPO <2.15 0.8 0.02 0.79 0.79 1.18 0.56 0.41 1.56
AAPO 1.99 0.7 −0.08 0.64 0.84 1.41 0.88 0.64 1.05
AMPO <1.39 0.7 0.06 0.79 0.46 0.83 0.93 0.26 1.78
AP 2.45 −1.1 1.09 0.55 0.29 0.11 1 0.45 0.92
APO 2.82 0.3 −0.16 0.5 0.43 0.90 1.31 0.42 1.36
BOA <1.82 0.3 0.84 0.74 1.40 0.64 1.39 1.16 1.17
DIMBOA <2.02 0.8 0.92 0.6 0.42 0.20 1.51 0.62 2.25
HPAA <1.89 0.3 0.78 0.61 0.43 0.30 1.18 0.49 0.75
HPMA <2.00 0.8 1.04 0.3 0.41 0.70 1.16 0.84 1.04
MBOA <1.92 1 0.80 0.8 1.07 0.31 1.57 0.9 1.8
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values are in agreement with the ones predicted using the
different approaches, except for one compound (DIMBOA), for
which the model that was built using PLS analysis andfield-
baseddescriptors predicted a toxicity value (-log EC50 ) 2.25)
slightly outside the range of experimental toxicity found (-log
EC50 < 2.02). However, for BOA and MBOA all of the
predicted values are in agreement with the experimental values
obtained (<1.82 and<1.92, respectively).

Moreover, because benzoxazinones were shown to degrade
very rapidly in soil and the transformation products exhibit more
pronounced biological activity than the parent compounds, the
model was used to predict the toxicity of the degradation
compounds: APO, AMPO, AAPO, AAMPO, AP, HPAA, and
HPMA. From these results it is evident that when the experi-
mental values obtained are categorical (as for AAPO, AP, and
APO), in general the CoMFA analysis is able to give a better
prediction compared to the other approaches used.

We can conclude from the biotest results that none of the
natural wheat benzoxazinones or benzoxazolinone derivatives,
namely, BOA, MBOA, and DIMBOA, exhibited significant
ecotoxic effects toD. magna. Only the degradation metabolites
AP, APO, and AAAPO affected the freshwater animals (14).
Currently, it is unclear what the ecological effect of the
bioactivation due to microbial metabolization of those benzoxa-
zinones in soil could be. Further research would be necessary
to investigate degradation pathways for soil and for the aquatic
environment and to identify all of the degradation metabolites
that may cause toxic effects to human, animals, and plants.
Nevertheless, it could be demonstrated that biotests with a
nontarget organism could be a base for a preliminary risk
assessment and fit well to theoretical data. A detailed risk
assessment can be done only if allelochemicals would be used
as natural pesticides and application amounts in the field known.

We also developed models to predict toxicity of these
compounds using different approaches. Three-dimensional
models, usingfield-baseddescriptors, gave good results, which
also indicate important probable common toxic processes. Vice
versa, usingatom-baseddescriptors and statistical methods based

on automatic extraction of knowledge, we extracted information
more independent of mechanism, and due to their lower
performances, we can conclude that benzoxazinones and benzo-
xazolinone derivatives have very similar toxicity modes of action
to each other and also compared to the synthetic pesticides used
to build our models. Therefore, in silico approaches using data
of synthetic pesticides with structures similar to that of
benzoxazinones can be usefully applied to predict the toxicity
of benzoxazinones and derivatives towardD. magna.
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